
• AD—Aft 292 STAIFORD t*IIV CALIF DEPT OF COMPUTER SCIENCE
- — - -

F/S 9/2

~~~~~~~
LASSI:!

~~~~~~~~
STA

~~~
S!! 3 r

I



I ~~ VII~ 8 ~ 25

D ~

_ 

~J 3 2  

~
I2.2

~~° 2.0
I.I~~ IIIIi~8

11111’ 25 llIfli~ ~
MI’ ~ ~ ~I ~( ‘ I  UI UN [Si I I

Fir ~~ iU



—- 
—

.- . I

/
7 f ~~~1 /

~~~~~~~~~~~~~~~~~~~~~~

,,

~~~~~~~~~~~~

© REFERENCE MACHINES REQUIRE NON-LINEA R TIME TO
MA INTAIN DISJOINT SETS

by

Robert E. Tarjan

STAN-CS -77-603
MARCH 1977

COMPUTER SCI ENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

~~ 1t~

----

>— /
cL

U —~~
-
~ r~

‘3 - ;~~
_ “  

~~~~~

-
~~~~ ~~~~~ ~~~~~~~



Unclassified
S E C U R IT Y  CLASSIF ICAT ION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PACE BEFORE COMPLET ING FORM
/ / ~~-~~~~~eflT NUMDcfl 

- 
2. GOVT ACC ES ~~. ~~E’~ TPItNT S ~~~T*r6~T~ UMBERi~ STAN-cS-77-~~3J 

/
4. T ITL E (and Subtit le) 

~
, 

~~~~~~~~~
.Q&.R

~~~
cTT PERIOD COVERED

f

-
~
‘
~~~~ ~Reference machines require non-linear time to ( technical, March 1977
J maintain disjoint s~ ts • (6- P E RFORMING ORG. REPORT N U M B E R

L -...—-_,
~~~~

—---—-- — -—— ---i STAN-C S-77 -603
7. AUTHOR (s)~~ ~~ .‘ 8. CONTRACT OR GRA NT ~~~~~~~~~

~~~~ ~~ Rober~~f~~~rjan / 1 N~øGl4-76-c-~~~~~~~ L__
9. PERFORMING ORGA N I Z A T I O N NAME AND ADDRESS 10. PROGRA M ELEMENT . PROJ ECT . TASK

A R E A & WOR K UN IT N U M B E R S
Stanford University / / -

Computer Science Department ~ VA~ ’ I ,~i-~S- 7~
— --- — / “

Stanford, Ca. 914.305 ~~
. .--—

~
-- —.- -- -

~
- . -

~~~

. . - - — . - ---- . -

II . CONTROLLING OFF ICE  NAME AND ADDRESS (
~ f —~~~~~~~POR1’b ATE

Office of Naval Research lvlareh L~77 
~
‘

Department of the Navy 1~~~~RU~~~t R O~~ FA G~~S

Arlington , Va. 222 17 45
14. M O N I T O R I N G  AGENCY N A M E  & ADDR ESS( If  dilferenl from Cor.trolling Office) 15. SEC URITY  CLASS.  (of this report)

ONR Representative : Philip Surra
Duran d Aeronatics Bldg., Bm. 165_ - — Unclassified
Stanford University 

/ 
..

~~ 

~ 
-‘

~/ 1 / ISa . DECLASSIF ICAT ION DOWNGRADING
Stanford, Ca. 94305 

~~~~~~~ 

‘ / SCHEDULE

16. DISTRIBUTION S T A T E M E N T (of this Report)

releasable without limitations on dissemination

17. D I S T R I B U T I O N S T A T E M ENT (of the abstract entered in Block 20, If different from Report)

¶ 8 . S U P P L E M E N T A R Y NOTES

¶ 9 . K E Y WORDS (Continue on reverse side if necessary and Identify by block number)

Ackermann’s function, analysis of algorithms, concrete computational
complexity, data structures, disjoint set union, equivalence relation,
linking automaton, list proces~ in~, machine model, pointer, record, reference,
storage manipulation machine.

20. T R A C T (Continue on reverse side if necessary and Identify by block number)

rThis paper describes a machine model intended to be useful in deriving
realistic complexity bounds for tasks requiring list proce~~ in~ . As an
example of the use of the model, the paper shows that any such machine
requires non-linear time in the worst case to compute unions of disjoint
sets on-line. All set union algorithms known to me are iniL arice~ of the
model and are thus subject to the derived bound. One of the known
algorithms achieves the bound to within a constant factor.

DD
~~~~~~~~~~ 

1473 E D I T I O N  OF I NOV 65 IS OBSOLETE ~iicla~~ ified \ 1/ ’ 
i
’

..

( .1f ~~~~ 
- “ F F C U R I T Y  C L A S S I F I C A T I ON OF THIS PAGE (When Dale Enteted

— — — —— ——- . —-— — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ,
~~~~~ — -~ ~~~~~~~~~~~~~~~~~ ~~~ - . - -


SE CURITY CLASSIFICATION OF THIS PAGE(Wh en Data EnIar.d)

I

SECURITY CLASSIF ICATION OF THIS PA GE (When Date Fntered~

--

~

—- .-- —.---- .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~

~

/ 7

Reference Machines Require Non-Linear Time

to Maintain Disjoint Sets

Robert Endre Tarj an
Computer Science Department

Stanford University
Stanford, California 91~3O5

Abstract.

This paper desc r ibes a machine model intended to be useful in

deriving realistic complexity bounds for tasks requiring list processing.

As an example of the use of the model, the paper shows that any such machine

requires non-linear time in the worst case to compute unions of disjoint

sets on-line. A.l.l set union algorithms known to me are instances

of th ’~ model and are thus ~~ ect to the derived bound. One of the known

algorithn-: achieves the boun d to wi.thin a constant factor.

Keywords and Phrases: Ackerman n ’ s function , analysis of algorithms,
concrete comput ational complexity, dat a structures,
disjoint set union , equivalence relation, li nking

automaton, list processing, machine model, pointer ,
record , refe rence , storage manipulation machine.

This rese~1rcI was supported in part by Nation al Science Foundation grant
MCS’75-22~7G and by the Office of Naval Research contract NOOOll~-76-C-~~~~~Rep roduct ion in whole or in part is permitted for any purpose of the
United States Government .

3orn~ ~f thi s work was done while the author was v i s i t i ng the Faculty of
at ,hem&J~~ at the University of Bielefeld, Bielef eld, West Germany.

1

_ ~~~~~~~~~~
_ _

~~~~ . ~~~~~~~~
— — T ~T ~~~~~~~ 

— -. —



Introduction.

Computer scientists have attempted for many years to derive lower

b ounds on the complexity of comput ational problems . Thi s effort has met

with some success, providing, for example, exponential lower bounds on the

complexity of equivalence for regular expressions [13], validity in

Presburger arithmetic {l~4], and circularity in attribute grmmiars [7 1.

In addition to these bounds for hard. problems, several results for simpler

problems exist, including bounds on the number of comparisons required for

ordering problems [9], on the number of data accesses required for testing

properties of graphs [15], and on the number of arithmetic operations

required for evaluating various polynomials [2] .

In spit e of this progress , one domain, that of list processing i robler-~ ,

is  almost entirely devoid of lower bound results. The subject of data

structures is now part of the standard computer science curriculum, and-

every computer science library contains many books on the subject. Yet,

with the exception of a few results on the relative power of various dat a

structures, nothing is losown about the inherent power of pointer manipulation .

One reason for this state of affairs is the lack of a thoroughly

understood machine model which is both realistic and theoretically accessThlc.

One candidate, the random access machine [1], which has been used by

several authors to provide realistic measures of the complexity of various

algorithms, seems too powerful to analyze easily. It also has certain

defects, such as allowing unbounded parallelism if a “uniform cc~-t ’ measure

[1] is used.

h oweve r, another possible model exists. In 1953 Kolmogorov [11, 12]

Ir o1o~w1 a machine which operates by manipulating pointers connecting nodes .

Fifteen :.- -Lr : later ~Qsuth [~~] i roi u~ ed a similar machin e, whi ch he called2



- - .—~~~~~~ —-- ——~~~~~ --,~~ -—-. --- “,.—--- ~~~~

a linking automaton. Later and independently Sch~nhage [16] defined such

a machine, which he called a storage manipulation machine, and showed that

such machines can simulate Turing machines with multidimensional tapes in

real time . Although these machines provide a useful tool for describing

pointer manipulation algorithms, no bounds on their comput at ion al power

except Schönh age ’ s seem to exist .

This paper describes an extension of Enuth’s machine, called a

reference machine. The paper examines the ability of such a machine to

solve a problem requiring manipulation of disjoint sets, and proves that

any reference machine which solves the disjoint set problem requires

non-linear time (in the worst case) to do so, under certain natural

restrictions. The lower bound is tight to within a constant factor.

This result shows that it is possible (in at least one case) to derive

a non-linear lower bound on the complexity of a list-processing problem

using a realistic computer model. The result also provides a partial

solution to Knuth’s exercise 2.~~.1 [8] which asks us to “Explore the

properties of linking automata...”.

3



—~ 
,—.—

~~~
, .-—..- —

~~ —.-—--,-———- -.--
‘
——.

~~
—,-

~~ — — ~ —-. -—- .- ...

2. Reference Machines.

A reference machine consists of a memory and a finite number or

registers. The registers are of two types: data registers and reference

registers. The memory consists of a finite but expandable pool of records.

Each record consists of a finite number of items, each of which is either

a data item or a reference item. Each item has an identifying name . All

records are identical in structure ; that is, they contain the same items.

A reference machine manipulates data and references. A reference

either specifies a particular record or is null (0) . Each reference

register and reference item can store one reference. Data can be of any

kind whatsoever (integers, logical values, strings, real numbers, vectors,

t~t c .) . Each data regist er and data item can store one datum.

A prog ram for a register machine consists of a sequence of in st ruct ion s,

num~er-~d consecutively ~rom one . Each instruction is of one of the following

eight types. (Each r below denotes a reference register, each s denotes

a data register, each t denotes a register of any type, and each n

denotes an item name.)

r ~
- Place a null reference in regi ster r

.- t
2 (t1 and t2

must be of the same type).

Place the contents of register t2
in register t1 , ~ra~ing

what was there jreviously.

t — n (r) (n and t must be of the same type).

Let N be the n item of the record specife~ U:; the ~- ntent;

o.~ r . Place the contents of N in r~g~stur’ t , ~ra:ing wkat

was there p r -v i ou s ly . (If r contains 0 , th:~- in~ tru~ :r~

d :j t ~~ nothing.)

14

-, ~—~~~-=—-~ --~ ~~~~~~ — - --—- .. ~~~~~~ --——-~~
.- —~~~~-—- - -- —--~~~~~~~~- ~— - . ~~~~~~~~~ ._ , ~~~~~~~

I

n (r) .- t (n and t must be of the same type)

Let N be the n item of the record specified by the contents

of r . Place the contents of t in item N , erasing what

was there previously. (If r contains ~ , this instruction

does nothing.)

s2
Q s

3
Combine the dat a in registers

~2 and $3 by applying the

operation Q . Store the result in
~l

erasing what was

there previously.

creat e r Create a new record (not specified by any existing reference)

and place a reference to it in r

halt Cease execution .

if condition then go to i-___ _._ —
If the condition is true, then transfer control to instruction i

If the condition is false, do nothing.

Each condition in an if instruction is of one of the following types.

-true Always true.

= t2 (t1
and t2 must be of the same type)

True if the contents of t1 and t2 are the same.

True i~ the contents of and s~ satisfy the I redicat — p

wl~er~ p is any pred cate on data.

5

L~A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -- . . -—• - - — - -


~~~~~~~~~
- —-—.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—. --.—

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A reference machine executes a program instruction-Ly-in :tructi ~

in consecutive order, beginning with instruction O5i~~ . kxecutior~ of an

if instruction may cause control to be transferred to a iion-consecutive

instruction, in which case consecutive execution resumes ~rom this new

instruction. When the machine reach~~ a halt instruction, execution

ceases. The last instruction of o~~ry program is a halt

A reference machine step consists of the execution of a single

instruction. The running time of a reference machine program is the

number of step s the machine requires to execute the program, a: a

function of the initial state of the registers and memory. The storage

space required by a reference machine program is the number of records

i~ itiaJ ly in memory plus the number created during execut ion .

When a new record is created all its items initially contain a

special value called undefined (A) . The initial value of any register

may also be ~ 
. If a referen ce machine att empts to use the contents of

a register or item containing A , it halts. However , the machin e is

allowed to store another value into a register or item containing A

I shall be uninterested in constant factors in running time and

storage space. With thi s assumjtion, the register-to-register assi~~ment

is a redundant instruction type since it can be simulated by a create

a register-to-memory assignment, and a memory-to-register assignment.

Similarly uses of the null reference value can Le deleted- w thout affecting

running t~~m by more than a constant - -L o r .  Extending the machine model

by allowing :uv ral tyj c. of roy rJ. has the effect  only of saving a constant

act-)r in stJra~o 5J e.

— .



~~ -~r —~ -~~~ ~~~~~~~~- -~ 
-.. ~~~~~~~~~~~~~~~~~~~~~~

To coapletely specify a register machine, one must describe the data

and the types of operations allowed on the data. Knuth ’ s linking automaton

is a register machine whose data consists of symbols selected from some set.

No operations on data are allowed except testing for equality. Henceforth

wc shall use the for ;. a~ci:ol in a tccbnical  son::  to rc:~yr to dat a n

which no operations are permitted except testing for equality.

A pure reference machine is a register machine with no data. It is

not hard to show that any linking automaton with a finite set of symbols

can b e simulat ed by a iur e reference machine with a loss of only a constant

factor in runni ng t ime . I shall con;i ie r  exa.:a lcs of reference ::.aci~ino: wUich

have integers as dat a and addition and comparison as allowed operations.

The lower bound result holds for  all reference machine;, whatever their data .

In a reference machine , access to memory is by explicit reference only ;

no computation on references is possible. The reference machine model is

thus apparently less powerful than the random access model with uniform cost

measure [1]; reference machines lack the ability to usc address arithmetic

for such purposes as manipulating a hash table [9]. performing a radix

sort [9], or accessing a dense matrix [ ~ 1 . These machines are, however,

powerful enough to simulate such list-processing languages as LISP and to

model the list-processing features of Algol-W, 1L 1 , and other general

pu~~ ose languages.

It wa~~ol of course be po; sible to study the oenora l a~;~ ertio; of

r- - i er c nco mayb inec , com~~~ ing their l ower with  that of other classes of

a i t arc ata, a; Sch~nhag e [1- ] has don e . Here , howeve r , I analyze the ability

of reference mach ino:  to : :1-sc a : 0c f i c  ry ble : . a h o t  ~roce;sThg.

-7 

~~~~~~~~~~~~~~~~~~~~~ . . .~~~~~~


The Disjoint Set Union Problem.

Let
~~~~~~~~~~~ 

be n disjoint sets, each containing a single

oi:ment. The disjoint set union problem is to carry out a sequence of

operations of the following two types on the sets.

find(x)  : determine the name of the set containing element x

union(A,B) : add all elements of set B to set A (ie:troying

set B).

The operations are to be carried out on-line; that is, each instruction

must be completed before the next one is losown . N ; shall a:suae that  the

sequence of operations contains exactly n-i union operations (so that

alter the last union all elements are in one set) and m :f ~ intermIxed

:in:1 operations (if m < n , some elements are never t uai

The disjoint set union problem is an abstrac i:i~ n of ;. rations

necessary to imp lement FORTRAN EQUIVALENCE and ~~~~ stat :aents [ 5  ] .

Algorithm s for this problem and for a generalizat nn of it have

-our iications in graph theory [i:°.J, global code o~timization [1 ,l J ,  and

linear algebra [19]. A number of algorithms exist [l,~~,5, o].

A reference machine solution to the set un : on problem cons ist s  of a

reference machine, a representation of the input sets as collections of

records , a program for carrying out a find , and a ro~ rain :or carrying

cut a union • The reference machine solves the set union problem in the

: oilowi ng way . Initially the m a c b i n  memory represents the i r ~ ol sets.

ach f i n d  is carried out by executing the find program, which halts

hav i ng i dentified the set containing the  desired element. Each union

carr ied  out by executing the union rogram, which halt; having

- 1  the ;ntents of mom r~ to reflect the uni UL. I shall make the

Li ~ : r~ : assumption : ceme nt  ng the I et a i  is of this I reces;.

- _~~ 1 - ._-- .— — - , ~~~~~~~~~ —~~~~~~~ — —— - —  -
~~~~~~~~~ 

- - -

~~~~~~~~~~

-. 
~

. 
--

~~~~ 
— —— , - . -—

(3.1) Each set and each element has a distin ct associated symbol.

(3.2) No record in the collection for an input set contains the symbol

of any other set or of any element outside the set.

(3.3) No record in the collection for an input set contains a reference

to any record outside the collection.

(3.14) Before the find program is executed to locate the set containing

an element x , a reference to some record containing the symbol

for x is placed in the designated input register r1 and ;~ is

placed in all other registers. The find program halts with the

symbol for the set containing x in the designated output register :~

(3.5) Before the union program is executed to add elements in set B to

set A , references to records containing the symbols for A and B

are placed in the designated input registers r1 and r2 , respectively,

and A is placed in all other registers. The union program halts with

no output.

The sequence of ste~~ associated with a set union

problem and a reference machine solution is the sequence of steps

executed by the machine when it carries out the finds and unions . The

length of this sequence measures the total running time of the machine.

The main result of this paper is a non-linear lower bound (as a function

of n and m) on the length of any sequence of steps which solves a

worst-case instance of the set union problem.

The formulation described- above is intended to be realistic and to

facilitate derivation of a lower bound. Assumption (3.1) above, requiring

that sets and elements be represented by symbols, makes it impossible to

encode all elements of a set into a single datum and to move this datum at

9

_____________ - -
- --S-rn -~e--~~~~ .5’

-

~~
-
~~

~~~~ 
., - , - . S.--.



- -—--5--—-- -- __S_.-_ 5__ __ _~_S _S -5____5_S.__ _

1~
a cost of one step per move ; without thi s res t r ic t ion t i ie r :  i s  a rotorence machine

which can solve any set unon ~r~~lo~ in linear t m - . Assumr t i .  mc (5.2), (3.3 ’ ,

and (3.14) imply that the machine, when performing a find on some element x

has access only to records representing the set containing x . Assumptions

(3.2), (3.5), and ( 3 . 5 )  imply that the echiri e, when performing a union on

sets A and B , has access only fL records representing the sets A and B .

It follows by induction on the number of finds and unions that (s.2’ ama

(~i .~ ) hold for the sets existing at any time during the computation, not just

for the input sets. In other words, the contents of memory after any

particular find or union can be partitioned into collections of records : 
-

such that each collection corresponds to a currently existing set, all

symbols for the set and its elements occur only in the corresponding
1k

col lec t ion of records, and no record in one collection contains a reference

to a record in another collection Without assumptions (3 2)-(3 5) any 4
particular instance of the set union problem can be solved in linear time N

by initially moving symbols for all sets and elements into a single record

and solving all finds by accessing only this record, though I conjecture

that even without assumptions (3.2)-(3.5) no single reference machine can

solve all instances of the set union problem in linear time.

If an algorithm for the set union k roblem is to be u~e~ul in practice,

the symbol of each set and of each element should be 5Lored in exactly one

record, so that the initialization for find; (3.14) and unions (3.5) is - —

uni quely defined. ALl the algorithms to be considered have this property,

but the lower bound proof does not require it.

H-li

10

__  ~~~~~~~~~~~~~~~~~~~~~~ -~~~~ -.- ‘ ~~~~. - - - - ‘--—— . — -



—5--— --— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1~. Algorithms for the Set Union Problem.

All algorithms for the set union problem known to me can be ins lemea;od

on reference machines. This section describes six such algorithms. The;-:

algorithms are of two general types, quick find- , requiring constant time

for each find , and quick union , requiring constant time for each

union • All the algorithms represent each input set by a single record,

containing the symbol for the corresponding set and the symbol for the

corresponding element in data items set and element , respectively .

Each element is permanently acsociated with the record- containing its

symbol, and no new records are ever created, miring the computation,

a currently existing set is represented by the collection of records

corre~o anding to its elements and the symbol for the set is contained in

exactly one of these records.

In the quick find method, each record contains two reference items,

parent and next • One record in the collection representing a set

contains the symbol of kh-~ set. The parents of all records in the

collection refer to this header record. The next items link all records

in the collection into a lis~ whos- :‘irs.t -:-ler.ent is the header. Figure L .i

illustrates this data structure.

[ Pigure 1 .1)

Wi th this representat - n , a find requires  two re fe rence  machine

steps; one to access the parent of the input record (which refers to the

header) and one to access the set of the header. A union of A and B

requires seven steps per element in B ; each record in the collection for

B must have its parent modi fied to refer to the header ~ A and mud

11

-- - --S.—- ~~~~~~~~~~~~~~~~~~~~~~ - 5 -- —— , - - -~~~~~~ ~~~~~~~~~~~~~~~~~~~



- Thr - - -

S.--

be linked I nt ’s the list for A • Table 14.1 contain: rugrm :-s Lr i Alg -±-l i lc e

n :t at i o n  for union and find • It is easy to translate these into

reference machine programs.

[Table 14.1]

Adding a heuristic to the union rrogram iso r oves  its perform ance

considerably. Each record needs an additional data it em, size • The

size i tem is only meaningful for headers; it counts the number of elements

in the corresponding set. To perform a union of A and B , the size of

A is corn ared to the size of B . If B is smaller, the union proceed-s

as f-chore . If A is smaller, the symbols for A and B in the headers of

tic : sets are interchanged-, the references in r1 arid r2 t o the header s

are interchanged , and the union jro:eod; as before. The t ime required- for

such a weighted union is Ir000rti an al to the size of the smaller of A

and B . Table 14.2 contains a program for this heuristic.

[Table 14.2]

In the guick union method-, each record contains only one reference

it-sm, parent . The collection of records representing a set forms a rooted

*/
tree—’ with the parent of each record referring to its parent in the tree;

—‘ A rooted tree T is a connected, acyclic, undirected- graph with a
unique distinguished vertex r , called the root sf T • If v and
w are vertices of T such that v is on tE~7unique) simple path
from r to w , then v is an ancestor of w and w is a descend-ant

of v . This relationship is denoted by v w . The relationship

-J -. w and v w is denoted by v -. w . If v -. w and (v , w~ is
an edge of T , then v is the parent of w and- w is a child of v
This relationship is denoted by v -. w . A leaf is a vertex with no

L 

chilth-en. The height of a vertex v is the length (number of e’1~js)
of the longest simple path fr om v to a descendant of V . The
subtree of T rooted at vertex v is the subgrap h of T induced by
the descendants of v , wI th v as root.

12

- --- - --4
— —---5-- -5— --



the parent of the root is 0 The root contains the symbol of the set.

Figure f,f illustrates this data structure.

[Figure 14.2]

With this representation, a union of A and B requires only one

machine step, to place a reference to the root of A in the parent of

the root of B • A find is performed by starting from the input record

and following parent references until reaching a record with a null

parent ; this record is the root of the tree representing the set and

contains the set symbol. The find requires time proportional to the

number of records on the path from the input record to the root. Table L.~

contains programs for these versions of union arid find

[Table 14.3]

The weighted union heur ist ic  can be added to quick union ; it use:

extra time on unions but may save time on later finds . A heuristic

for finds called path compression is also useful . After a find , every

record on the path from the input record to the root has its p aren t

modified to refer directly to the root. Path compression increases the

running time of a find by a constant factor but may save time on later

finds . Table 14.14 contains programs for union and find with these

heuristics.

[Table 14.14 ]

The quick find algorithms are apparently part of the folklore of

compiler construction; a description of these algorithms appears in [1]. The

quick union algorithm with the weighted union heuristic was cl rst presented

in [5]. The path compression heuristic is apparently due to Mcllroy and

Morris [1]. Worst-case analysis of these algorithms appears in [l,1~,5, - ,17];

Table 14.5 summarizes the results. The theoretically best algorithm in the

13

: -- -- -



• - --- — - 
_w --

worst case is quick union with both heuristics; it; running time is

O(m - r ( I I 1 ,n ))  , where cr(m,n) is a functional inverse of Ackerm ann ’ s

function defined as follows.

For i,j > 0 let the function A(i,j) be defined by

(14.1) A(i,O) 0

A(0,j) = for j > 1

A(i,l) = A(i-l,2) for i > 1

A(i,j) = A(i-l , A (i,j-l)) for i o- 1 , j > 2

Let

( L . 2 )  a(i,n) = min (j A(i,j) log2 n]

(14.3) ~(m,n) = min [i > 1 A(i, L2m/ni ) > log2 n) 
~~~

[Table 14.5]

Yao [21], Doyle and Rivest [3], and Krnith and Sch~5nhage [10] have

carried out average-time analyses of the algorithms for several reasonable

probability measures under the assumption that m and n are proportional.

Table 14•6 contains the results of Yao and Knuth and Schönhage for one

measure (see [21]).

[Table 14.6]

The quick union algorithm is simpler and requires less storage than

the quick find algorithm and is thus more useful in practice. Whether

either of the two heuristics should be used with this algorithm depends upon

the size of the problem and the cost of time versus the cost of space. The

average running time of the quick union algorithm with path compression

but without weighted union is unknown for the probability measure used by

Yao and Knuth and Sch~5nh age .

—‘ For any real number x , LXJ denotes the greatest integer not larger
than x

it

- a--—-- —

S. ~~~

~L--r. lath - - - ‘s; re- . - 15 .0 -c , r h e rJzuiirlg t ime of the quick union

LL~~ r rho ‘-ods r -~ - ~
ly (m - a; m - ’n increase;. For instance , if

w.: -n L-~~~ u ’ (.I -aid m /
~ ~ en~~~

’ for some positive constants

c arid , the rsc.z t~~~ t~~se is 0(m) . If weighted union is used and

a - -~~(k ,r~
- -v - ~o- 1o;Yive constants c and k, the running time is

Q (m~ • ~~~~~ ~~~-~ t ~~~~ ,n~ is (log log rf and a(l,n) is 0(log~ n~ , where

I t imer:
p.

l~~ n = alrili log log ... log n < 1)
fh~ we ghted ur~ r. v I e re~ oires that records contain integer data

it ems an~i eL-h re ft - r e r .ce machines -add and compare. It is natural to ask

whether the wei ghted union rule can be implemented on a pure reference

machine in such a way tb—i t the tot al time for all unions is 0(n)

The answer is yes.

Each non-negative integer is represented by a list which encodes the

binary digits of the integer. A zero is encoded by a null pointer; a one

is encoded by a non-null pointer. The digit list is singly linked from

the low order digit to the high order digit. Figure 14.3 illustrates this

representation.

[Figure 14.3]

Two integers are added by scanning the digit lists and adding digit-

by-digit, propagating carries in the usual fashion. The scan stops after

the end of the shorter li st is reached and the last carry stops prop agating.

Two integers are compared by scanning both simultaneously and noting the

hi ghest order digit on which they differ. The scan need only extend tc the

end of the shorter digit list; the integer with the longer digit list must

be larger. I leave as an exercise the implementation of these algorithms

as register machine programs .

The n-i union operations carried out by the quick union method

‘:rferrs the following arithmetic. Initially there are n integers, each

15

- - - — — - - 5 -

equal to one. During a union , two of the integers are compared- and

then added. After n-i unions , a single integer equal te n remains.

Since comparing two integers requires no more time than addin g them,

it will suffice to bound the time required by all the additions.

Le~mna 14.1. Let a ,b , be integers such that a+b = c and let (at)

(b4) , (c~) , respectively, be their binary digit lists- (a =

~~

a~f~

b = ~~~~ b.21 , c = ~ c.2
1

; a~,b.,c. e (0,1]). Let d. be the
i= 0 1= 0

carry from the i-th position when a and b are added. Then

k k
(a. -1- b .) = dk

+ ~ (c. +d .) for all k • In particular,
i=0 i= 0

E (a. +b .) = L (c. -~- d.)
i=0 i=0

Proof. For i > 0 , a1+b 1
+d

11 = c
~
+2d

~
(assuming d 1 = 0).

Thus a1 ~ b~ = c~ + d
~

+ (d
~

- d11) . Sunmdng from i = 0 to i = k

gives the lemma. ~i

——- —--~~~
_

~~~~~~~~~~~
_ - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — —  —



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~-~~--- -. - - --~ 

The time needed- to add two hI n ary integers by reference machine

is proportional to the length of the shorter integer plus the

number of carries. By Lemma 14.1, the total number of ones in the

binary representations of both integers is equal to the number of ones in

the binary representation of the sum plus the number of carries.

Consider the arithmetic performed- during the union operations.

Initially, the total number of ones in the binary representations of all

the set sizes is n • Each carry performed during an addition causes the

total number of ones to decrease by one. Thus the total number of carries

cannot exceed n-l , and the time required for all carries is 0(n)

It remains to bound the total length of the shorter of each pair of

integers added during union operations. Let f(n) be a worst-case bound

on this total length as a function of n . Then f(1) = 0 , and

f(n) = max[~~log2 kj 
+ 1+ f(k) + f(n-k) 1 < k < n/2) for n > 1 ,

since the length of the binary representation of k is ~log2 kJ+1

Lemma 14.2. f(n) < 3n-2 log2
(n+1)-1

Proof. By induction on n

f(i) = 0 < 3-2 log2 
2-1

f(2) = 1 z~ 6-2 log2 3-1

Let n -
~ 3 and suppose the lemma is true for all values less than n

Let k be such that 1 < k < n/2 and

f(n) = L10g2 kj + 1÷ f(k) + f(n-k)

By the induction hypothesis

17

S. ~~~- S .- -  —~~~~~



- ---- ~~~ — ~~~~~~~~~~ -

f(n) < log2 
k + l+3k-2 log2(k+l) -l+3(n-k) -2 log2(n-ki-l) — 1

-( 3n-l-log2
(k+1)- 2 log2(n-k+i)

The function - log2(k+1) -2 log2(n-k+i) for 1 < Ic < n/2 is maximum

when k =  1 • Thus

f(n) < 3n-l-log2 2-2 
log2

< 3n-2 -2 log2

Also, n > 3 implies n > n+1 , which means

-2 log2(n+l) > -2 1og2~J~~n = -2 log2 n -i

and

f(n) ~ 3n-2 log2(n+l)-l .

It follows that the total time to perform all arithmetic associated

with the union operations is 0(n) , and the following theorem holds.

Theorem 14.1. There exists a pure reference machine which solves any disjoint

set union problem in 0(m a(m,n)) time. 

——~~~~~~~~~~~~~~~~~~~~~ - -- - —  -



S. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ .

5. A Non-Linear Lower Bound.

This section shows that for all m and n there is a set union

problem which requires at least cma (m,n) steps to solve by reference

machine, where c is a positive constant independent of m and n

Rather than consider reference machines, I consider sequences of reference

machine steps. Given a set union problem, a sequence of reference machine

steps is said to solve it if there is some reference machine, some set of

union programs, one for each union, and some set of find programs, one

for each find-, such that when the sequence of programs corresponding to

the sequence of union and find operations is executed according to the

conventions of Section 5, the given sequence of reference machine steps

results and the find programs produce correct answers. 2ote that any

sequence of reference machine steps can be carried out by a non-branching

reference machine program. The first step in the lower bound proof is to

convert into a simile normal form any sequence of reference macbine step:

which solves a set union problem.

Theorem 5.1. Let S1 
be any sequence of reference machine ste- . ; which

solves a set union problem. Then there is a sequence of reference machine

steps 
~2 

which also solves the set union problem and has the following

properties :

(5.1) < 2(m+n+ j
~
.

(5.2) 22 man ipulate; no data except set and element symb ol:.

( 5 . 3 )  2
2 represents each input set by a single record and contains no

creat-e instruction.

( 5 . 1 4 )  S
2 

fetches a symbol from memory only as the last instru~tion of

a find

l

-~~~~~~~~~~ -- —- -- 
—-~~~~~~~ 

~~~~~~~~~~~~~~~~~~ S.


S.— .—,~~-- -—----— -- --———
~~~

----—- --
~
-- - - -

1— roof. Let S
1 

be a sequence of reference machine stei s which solves some

set union problem. Delete from all steps which manipulate data other

than set and element symbel;. The sequence S1 now satisfies (5.2) and

still solves the set union problem.

The sequence S2 to be constructed manipulates records corresponding

to the sets, the elements, and the records manipulated by S1 . Initially

the memory of 
~2 

consist; of one record for each input set A = [a)

This record- is the representative of the set A , of the element a , and

of each record in the initial collection of records by which

represents A • Each record created by S~ also has a representative in

the memory of 
~2 

defined as follows. The representative of a record

created during execution of find(a) is the representative of a . The

representative of a record created during execution of union(A,B) is the

representative of A • For any object x (set, element, or record-), let

x~ denote the representative of x .

S2 
siraulote.- 

~l 
step-by-step. If 11 and S2 are executed in

parallel , the memory and registers of S2 
correspond to the memory and

registers of 
~l 

in the following way.

(5.5) If and R2 
are records in the memory of S

1 
such that

contains a reference to R2 , 
then R1 

contains a reference to

R (unless R1 = P2 ).

(5.~ ) If P is a record containing a set or element symbol x , then

R contain; a record t e x  and x contain; a reference to

R (unless ~~ = x ).

(5.7) If some register of S~ contains a reference t~ a record- P

then some register of S2 
contains a reference t0 R~ .

20



- 
- - - - .—.----- .---—-- -— - — - -

(5.8) If some regiser of S~ 
contains a set or element symbol x

then some register of 
~2 

contains a reference to x~

(5.9) During execution of find(a) S~ maintains a reference to a~

in a register. During execution of union(A,B) ‘ 
~2 

maintains

a reference to A in a register.

Initially the memory of S
2 

consists of all the representatives, each

containing the symbol of the corresponding set, the symbol of the

corresponding element, and no pointers. Properties ( 5 . 5 )  - ( 5 . 9)  hold

initially.

Let flnd(a) be a typical find. Si begins find(a) with a reference

in r1 
to a record R containing the symbol for a . If (5.L) holds before

the find, either R = a or a contains a reference to R . 
~2 

begins

the find with a reference to a* in r1 . S2 ‘
s first step is to fetch a

reference to R* into a register. This preserves ( 5 . 5 )  - (5.9).

Let union(A,B) be a typical union. S1 begins imion(A,B) with

references in r1 , r2 
to records R1 , P2 

containing the symbols for

A , B , respectively. If (5.6) holds before the find, either R = A

or A* contains a reference to B1 ; 
similarly either R

2 
= B or 3*

contains a reference to • 
~2 

begins the union with references

to A , B in r1 , r2 , 
respectively. 

~2 
s first two steps are to

fetch references to 4 and R into registers. This preserves

(5 .5) - ( 5 .9 ) .

S2 simulates each step of in the following way.

Each time S~ fetches a reference to a record P2 from a record R1 ‘

fetches a reference to P2 from R1 (possible by (5 .5 ) ) .  Each t ime

stores a reference to a record R2 
in a recorii R1 , r

~ 
store; a

reference to B2 in 4 (possible by (5.7)’~. Each

21

S. —- --— S .  
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~~~~- -


time fetches a set or element symbol x from a record R

s2 fetches a reference to x from R (possible by (5.)). Each

time
~l

stores a set or element symbol x into a record B ‘

stores a reference to x~ in B said a reference to R~ in x~ (possible

by (5 .7) and (5.8)). Each time
~l

creates a record,
~2

does nothing.

At the end of each find, ~L.
fet s the appropriate set symbol. Each

of these steps preserve; (5. 5) - (5 . 9) . The sequence S2 constructed

in thi s way carries out the find; and satisfies (5.1) - (5 . 1 4) . ~

One can represent the memory manipulated by a reference machine as

an undirected graph, with one vertex B for each record B and one edge

for each reference. If a record R1 contains a reference to a record B2

then (R~,R~) is an edge in the graph. This representation motivates the

following definition, which reformulates the set union problem as a graph

construction problem.

A link solution to a set union problem consists of a set of vertices

V , one for each initial set and element, and a sequence of instructions

of the form link(v,w) where v,w€ V . The sequence of link instructions

constructs a graph edge-by-edge, starting from the graph with vertex set

V and no edges; link(x,y) constructs edge (x,y) . For any initial set

or element x , let x denote the corresponding vertex. The sequence of

link instructions must satisfy the following properties.

(5.10) The sequence of links can be partitioned into contiguous subsequences,

each subsequence corresponding to a union or find operation.

(5.11) Let find (a) with answer A be a typical find. Each link(x,y)

in the subsequence for find(a) is such that x = A and the

distance between x and y in the graph existinh be : --re the

22

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

~~~~_~~S._~~~~ ~~~~~~~ _~~_~~~~~~~_


- ~~~~ —~~~~~~~ - - - -— - —-- --. - ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
--- - ------

~~~~~~~~-
-----‘.. -

link is two. The instruction link(A ,a )  occur; eirh~r ft the

subsequence for find (a) or earlier in the sequence.

(5.12) Let union(A,B) be a t~~ical union. Each link(x ,y)  in the

subsequence for union (A, B) is such that x = A and either

y = B or the distance between x and y in the gr aph

existing before the link is two.

Theorem 5. 2. ~ iy set union problem solvable in k reference machine step s

has a link solution of length not exceeding 5m+ 14n+ 14k

Proof. Let be a sequence of k reference machine steps which solves

a set union problem. Let 
~2 be a sequence of reference machine ste~. s

satisfying Theorem 5.1. Then ~~~ < 2 (m+n+k) . From 
~2 we construct

a link solution S
3 

satisfying the theorem. The vertex set for S_

consists of one vertex R~ for each record B manipulated by S~ . If

S2 and S
3 

are executed in parallel, the following properties hold.

(5.13 ) If a record R1 contains a reference to a record p
2 , then

the distance between R1 and P2 is at most two .

(5 .114) Let find(a) with answer A be a typical find. If during this

find some regi ster of 
~~2 contains a reference to B , then

either A = R * or (A~,R~ ) is a previously constructed edre.

(5.15) Let union(A,B~ be a typical union. If during this union

some register of S2 contains a reference to R , then either
, 

*A = B or (A ,R ) is a previously constructed edge.

simulates S2 instruction-by-instruction. Certainl~- (5. 15) - (5.15 )

hold initially. Let wiion (A , B) be a typical union. To begin the uni on ,

23  

—-- -- - —- - _~~~~~~~~~ --.------ --.- -- -
~~—-.-- - .—— -—- ~~~~ -~~~~~~~



— - -

S
3 

links A and B~ . This preserves (5.13) - (5.15). Let find(a)

with answer A be a typical find. Suppose S fetches £ items from

memory while carrying out the find. If (5.13) holds before the find, there

must be a path of length 2! or less between A and a in the graph

existing before the find. To begin the find S
3 

links each vertex 
- 

-

on this path to A • This preserves (5.13) - ( 5. 1 5).

Consider a subsequence of S2 
corresponding either to a find (a) 

1
with answer A or a union(A,B) . Suppose S2 fetches a reference

(say to from a record (say R1 ). If (5.13) - (5.15 ) hold before

the fetch, then there is a path between A* and 4 of length at most

three. ~ links each vertex on this path to A . This preserves

(5.13)- (5.15). All other instructions in 
~2 

do not affect (5.ls ) - (5.1~~;

in order to store a reference (say B2 ) in a record (say R1 ), S2 must

first have references to R1 
and R2 in registers. By (5.114) and (5.15 ) 

1
this means that the distance between P1 and R2 in the graph existing

before the store is at most two.

The total length of the sequence 3
3 

constructed in this way is

at most 5m+ 14n+ 14k , and the sequence clearly solves the set union

problem. ~

In the following discussion I shall not distinguish between an

initial set, its single element, and the vertex representing the set and

the element. Corresponding to the sequence of unions in any set union

problem is a rooted tree, called the union tree, whose vertices are the

initial set ; and whose edges are the pairs (A,B) such that uriion(A,B)

~S. S._ ~~~~~~~~~~~~~ 
._____ _ __ _ _ ___._ _.~_ .___ _.._ ___ ~~s__-._~_ _ 

— - - --—---- .— -- ..----- —— --- —- --- --- -- --- - - —



- 
~~~~~~~ 

— S. _
~

_
~ •_~_ ~~~~~~~~~ ~~~~~ -— ~~

S. —
~~~ __~_~_~_ - —.--————-— - ~~~~~~~~~~~~~~~~~~~~~~~~~ 

— —----—- - -----—.————- - ------- ,--— - —w-————-------— 

occurs in the sequence. The root of the tree is the set remaining after

all unions are carried out. With this definition, every link(v,w) in

+
a link solution to a set union problem has the property that V -. w in

the union tree. In the worst-case set union problems to be constructed

below, the union tree is a complete binary tree.

The lower bound proof makes use of a rapidly growing function B(i,j)

defined for i,j > 1 as follows.

(5.16) B(l,j) = 1 for j s- 1

B(i,l) = B(i-l,2)+l for I > 2

B(i,j) = B(i,j_l)+ B(i_l,S
B(i

~J~~
)
) for i,j ~ 2

~emma 5.1. B(i,j)+l < A(i,2j) for i,j > 1

Proof. It is easy to show by induction that A(i,j) K min(A(14-l,j),A (i,j+l))

for 1 >0 , j > l .  Also,

(5.17) A(i,j) = A(i-l,A(i,j-l)) = A(i-2,A(i-l,A (i,j-l)))

~A(i,j-l) 
2
A(i,j-1)+2 for i,j > 2

The lenmia follows by double induction on i and j

(5.18) B(l,j)+l = 2 < = A(O,j) < A(1,2j) for j > 1

(5.l~ ) B(i , 1)+l = B(i-l,2)+2 < A(i-l, 14)+ 2 < A(i-l, t~- )

< A(i-1,A(2,l)) <— A(i-l ,A(i , 1)) = A(i , 2) for i o’ 2 ,

if B(i-l,2 )+l A( i -2 , 14) ;

--

--



(5.20) B(i,j)+l = B(i,j_l)+ B(i_l,2
B
~~~~~~~ )+l

< A (i,2j_2)+A (i_l,2.2~~
i
~
23_2))

< A(i_l,2.2
A
~~~

2J 2)+A(i,2J_2))

< A(i_l,2A~~~
2 2

~~
2
)

< A(i-l,A(i,2j-l)) by (5.17)

= A(i,2j) for i,j — 2 , if B(i,j-l)+l -
~ A(i,2j-2)

and- 3(1 l,2B(i~ J 1 ) )÷ 1 < A(i_l,2.2B~~~
3_ 1)

)

Theorem 5.3. For any k,s > 1 , let T be a complete binary tree of

height h > B(k, s) . Let [V 1 
1 ~z i < 52B(k~s) ) be a set of pairwise

unrelated vertices in T , each of height strictly less than h-B(k , s)

such that exactly s vertices in (v
~} 

occur in each subtree of T

rooted at a vertex of height h-B(k, s) . Then for n = 2
h+1_1 and

B(k,s) .
m = s2 there is a set union problem for which

(5.21) the union tree is T ;

(5.22) the set of finds is [find(v1) 1 < i < m}

(5.23 ) the answer to each find is a vertex of height strictly greater

than h-B(k,s) ; and

(5.214) any link solution has length at least km , even if every edge

(v,w) such that v~~.w and h(v) < h-B(k,s) in T is allowed

for free, and after each link(v,w) every edge (x,y) such

* +
that v — x -. y -. w is added for free.

Proof. The proof I; by donble induction on k and s and is similar to

the lower bound proof in [17J. ~u~~o;e k = 1 • Consider any set 
union2



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~

problem consisting of n-l unions which form T followed by a find on

each vertex in {vj • The answer to each find is the root of T

(5.23) holds since h > B(k,s) . None of the originally free edges solve;

a find. Since the vertices in [VjJ 
are pairwise unrelated, any link(x,y)

can solve only one find, even including the appropriate free edges.

Thus (5.214) holds.

Suppose the theorem holds for k-i , s = 2 . The following argument

proves the theorem for k with s = 1 . Suppose the hypotheses of the

theorem hold. Let [u. 1 < I <m ) be the set of vertices of height

h-B(k , l) in T , numbered so that u
~ 

-. v~ . The vertices in

are pai rwise unrelated and exactly two occur in each subtree of T rooted

at a vertex of height h-B(k, l )i- 1 = n-B(k-l,2) . By the induction

hypothesi s there is a set union problem satisfying the theorem for

k’ = k-i , s~ = 2 , T , [u~~ . Let the sequence of finds and unions in

this set union problem be P1 . Form P2 from P1 by replacing each

find(u1) by 1ind(v
~ ) . I claim the resulting sequence satisfies the

theorem for k , s = 1 , T , [v~j

Certainly (5.21) - (5 .23 ) hold. Consider any sequence 
~2 of links

which carries out P2 , allowing for free the edges described in (5.2 14).

Form a sequence S1 from 35 by replacing each lirik(x, y) such that

v. -. y for some (uniquely determined) i by link(x ,u
~

) . Delet e from

all links which do not creat e new edges. I claim S1 carries out

p1 (allowing appropriat e edges for f ree)  and that ~S1~

The following property is true initially and is preserved if S1 and

are executed in parall el (on separate graphs).

27

L-~ _ _ _ _ _ _ _ _ _  

- ‘ 



(5.25) For 1 < i <m , U . is adjacent in the graph manipulated by

to all vertices adjacent to at least one descend-ant of -

~~~~

in the graph manipulated by
~2

It follows that S1 carries out P1

For any v~ , consider the f i r s t link(x,y) in 22 such that

x
~
. u

~ ~
. v~

-
~
. y . There must be such a link since none of the initially

f ree edges solves find(v4) by (5 .23). There must he a path of length tw~ ,

say (x , z) (: , y) , between x and y in the
~2 graph existing be fore th~ l iok.

Furthermore z must satisfy u~ -. z — v~ . It follows that (x ,u .) is

an edge of the existing S~ graph. Thus S1 need not contain an

instruction link(x,u1) corresponding to link(x,y) . This is true for

any value of i • Hence I S 1I ~ I~ 2 I_ rn

Since (k-1)m < IS~~I by the induction hypothesis, I~~2I
< km

and (5 .2 14) holds .

Suppose the theorem holds for k , s-l and also for k-l , B(k , s-i)

The following argument proves the theorem for k , s • Suppose the

hypotheses of the theor em hold. Let [WI 1 < i < 2B(k , s)
1 b e a subset

of [vi) such that exactly one vertex w1 occurs in each subtree of T

rooted at a vertex of height h-B(k, s) . Let [u
~

i < < ~B(k , s)
1 be

the set of vertices of height h-B(k , .o) , numbered so that u1 ~
.

Consider the subtrees T~ , 1 2B(k , s) -B(k , s-1)
, rooted at

vertices of height h-B(k,s)+B(k,s-1) = h~B(k-l, 2 ’~’~~~~~) in T • Each

subtree T~ contains (5 1)2 B(k~s_ l) vertices in [v -[w .J , exactly

;~i in each subtree rooted at a vertex of height h-B(k,;) . By the

induction hypothesis there is a set union problem satisfying the theorem

for k~ = k , s’ = s-i , T. , [V V ~~C a vertex in T~ and vc jv~
J_jw

1))

Let F
1

be the sequence of unions and find; in th:s set union ~r-chlem.

23

-
~~-- -~~~~~~~~~~~~~~~~~~~~~~~ - - _ _ _ _~~~_ _ _ __

- _ _ - ;~~~~~~~~~~~~ _ --
~~

- - - -
~~~~~~~ - - - -

I- — - -  
S.~~__ •S.S.~_ S.



- -  S. — -~~~~ —-—~--— - .~_- ~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
- -

The vertices in the set [u11 are pairwise unrelated and exactly

2B(k,~~—l) occur in each subtree T. of T . By the induction hypothesis

there is a set union problem sati;fying the theorem for k’ = k-i

= 2
B(k,s-l) 

, T , [u1} . Let Q be the sequence of unions and finis

in thi s set union problem. The sequence Q can be permuted, without

increasing the number of links required to carry out Q , so that a~ll

unions forming the subtree; T .  occur before all othe r operations.

Let Q’ be formed frosi the permuted version of Q by deleting all

unions forming the subtrees T~ , let Q” be fo rmed from Q’ by replacing

each find(u1) by ~~~_d(w1) ~ and let ~“ =

I claim ~~
‘ defines a set union problem which satisfies the theorem for

k , ; , T , [v.}

Certainly (5.21) - (5.23) hold. Consider any sequence S” of links

which carries out P” , allowing for free the edges described in (5.214).

Form a new sequence S from S” by replacing each limk(x,y) such that

w1 — y for some (uniquely determined) i by link(x,u . )  . Delete from

S all links which do not create new edges. The following property is

true Initially and is preserved if 2 and 2” are executed in parallel

(on separate graphs).

(5.2 - ) For 1 < i < ~~~~~~~~~~~~~ , u~ is adjacent in the graph manipulated

by S to all vertices adjacent to at least one descendant of w1

in the graph manipulated by 2”

It follow; by an argument like that in the pL -evi ous case that S

c’arries out F’  = F1, F ‘~~~~
‘1,~ - ( k , s~ -B( k, ;-l )’~~ 

and that

- ,, B(k , s)  , - -
1 1 1  I~ 1-2 . can be written a; 2 = 

~~~~~~~~~~~~~~~~~~~~~~~~~~

T._

~

— ~~ ~~~~~~~~~~~~ ~~~~~~~ S.~~~~~~~~ S.

.— ---

where carries out P~ for 1 < < 2B(k,s)-B(k,s-l) , allowing

for free the edges described in (5.214), and U carries out Q’

allowing for free the edges (v, w) such that v ~. w and

h(v) < h_ B(k_ l ,2B
~~~~

_J
~~) and after each link(v,w) allowing for free

* +the edges (x,y) such that v -. x -. y -. w . This means that U carries

out Q. , allowing the appropriat e edges for free. By (5.2 14),

I~~I s- ~~~~~~~~~~~~ for i < i 2B(k,s)-B(k,s-l) and

lul —> (k-l)2~~~~~ . It follows that

> k(s_l)2B~~~~~÷ (k_l)2
B ,s)~~2B(k,s) = ks2B~~

,5) 
=

Thus (5 .2 14) holds . By double induction, the theorem is true in general . ~

Corollary 5.1. Let k, s > 1 • Let T be a coniplete binary tree of

height B(k, c) . Then there is a set union problem whose union tree

is T , which cont ain s m = 2B(k, s) finds, and which requires at least

(k-l)m links for its solution.

Proof. Choose 2 > 1 such that 2 2 
> s . Let T ’ be a complete binary

tree formed by replacing each leaf of T by a complete binary tree of

height I • Let [v~ 
1 < i < m) be any set of vertices satisfying the

hypotheses of Theorem 5.3 for k , s , T’ • For 1 K i < m , let u~

be the vertex of heIght I in T’ such that U. ~ . v. • Let P’ be

a sequence of unions and finds defining a set union problem satisfying

the conclusions of Theorem 5.3 for k , S T ’ , [vj . Without loss of

generality we can assume that the union s which form the subtrees of T’

rooted at height £ occur at the front of P’

Form F from P ’ by deleting the unions which form the subtrees

of T’ rooted at height 2 and replacing each find(v .)  by find(u. )

We claim P defines a set union problem satisfying the conclusions of the

30

A - -  -- “‘ ~~~~~~~~~~



corollary. Certainly P contains in finds and the union tree of F

is T . Suppose S is a sequence of links which carries out P

Form 5’ from S by following each llnk(x,u1) which solves a

flnd(u1) by link(x,v
~

) . Then S’ carries out P if all edges

(v, w) with h(v)  < £ are all owed for free . Thus I S’ I > km , and
- > (k-l)m •

Theorem 5.2 , Lemma 5.1, and Corollary 5.1 combine to establish

the main result of this paper.

Theorem 5. 14 .  There is a positive constant c such that, for all

in > n ;- 1 , there is a set union problem consisting of in finds and

n-i intermixed unions whose solution by reference machine requires at

least crn a(m ,n) steps .

Proof. Let s = Lm/nJ . Choose k as large as possible such that

2B(k, s)+1 1 < n • Partition the n elements into as many sets as

possible of size 2B(k,
;)+1

1 , plus leftover elements. At most n/2

elements are left over. On each set of 2B(k,
s)+1 1 elements, define

a set union problem satisfying Corollary 5.1. Concatenate these problems,

add. enough additional unions to combine all elements, including the

leftovers, into a single set , and add enough addition al finds to bring

the total to m

The resulting set union ~rob 1em contains m finds , n-i intermixed

un ions, and requires at least (k_ l)s2 B
~~~~~ ~/2

B(k~s)42
= (k-l)sn/ l~ ~

-

(k-l)m/ 8 links for its solution. By Theorem 5• 2 , this set union problem

requires at least (k-l)m/32 - 5m/ 14 - ii ~‘ (k-73)m/32 reference machine

step s for its solution.

_ _ _ _ _ _ _ _ _ _ _ _ _ S.~~~~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
— -

~~~~~~
- --

~~ 
-

If a(m,n) 2 , k > a(m,n)-i in this construction since

B(a(m,n)-1,s)+l K A(a(m,n)-l,2s) by Lemma 5.1

K log
2 
n by the definition of a

Thus the selected set union problem requires at least

(a(m,n)_ 714)m/32 > a(m,n)m/614 reference machine steps, if

a(m,n) > 1148 . But if a(m,n)  < 1148 , ~~~ set union problem requires

at least in > ~~ (m,n)/ l14u reference machine steps. Choosing

c = 1/1148 gives the theorem. 0



S.~~~~ ~~~~~~~~~~~~~~~~~~~~~

Conclusions.

This paper has described a machine model , called a reference machine ,

suitable for analyzing list ~rece:sing ~: robloms. The mode-i is similar to

several previously proposed { , li, L~. 1- 1. Re 2crer~co rn Lc ~nes are t~

powerful; 2ch~nh agc [LT} has -hewn that th ey can simulate Thar ie- c~ a-~chiao:-

with mult~ d~mensiona1 ta T -es - in  real ~o1me , and one can show that they can

rim-slate rondos access machires wi tl ~ - rar i flr:ic cost J a  real t dse .

The paper has analyzed the sh ility  of reference machines to c:rs ut-

disjoint set unions. Under certain natural res t ric tions , all reference

machine s  require non— iine -~r t ios r.- to :eiv’- ~bi s r L l ~~.. This lower

character i sos the 0d ieJcn -57 w ft -dO sO -sac so- i .  S o :  i-scent u:~~waic -
- : -~~~~

- . certain ~-in~i in a :t truO -u - - T h e  hound ioes not re-pu re that

the machi ne be j s t e i~O ~~ e.  u- t h at  she r s~traa of the machine be l i x e l

wa le tb: roblea. si:e ~n- ws . ;r ~-~oO- i-bc c son le:-i ty of memory (number ot

2Jolds per rarer-i ) be ~Oxed w~Otc the roblem ;i:-c grows .

This ger~ -r e J i t :j  iso - - - h O e  m-i ’O ng tOo - oc :usopt ion that the

-ch-cri: ti ~ 2 each se t 1, - :t-o ’ -~~ - - r n ’ sly one tOo t moving the

descrir t i u - uf’  a s e t  - 
- i- s o  fl:T fl t ime ~ er element . without these

a soL’Sl- t i sr -so 1 ~we-r h eso d -~ ~ a t -s - JO 0 . I coo lecture , however, that

the lower Loans held, if the - - :1- -rage assumption is replaced h~;

on ascu~~ t ion about the c~;mi - 1exity of r mni ~~ t!nr cly, that every record

cor i t -O r~s- only a ~T xeu a LL ’- l - c  u :  :‘i -TL- f Oni ’ -  ache d Ci ’ the problem sine- .

The j-a~ er h-a. . i— - a - ~~-~~su- -c- s ot souo set usoi on :l~or - th”~ d ho ,

sho~~i that they all f it  into the i- - : : i’~~i~ c :  machine model. One of the di2orlU:

achieve-s tO- - lower bc -na - f  vi t h i n  a c ast -an t -
~~ 

-
~~ -r.  This ul~ ori thin

requires that arithm OJ c be c- r is - r--e , -u t  the ari thmet ic  can be .‘Oeu iaO -~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

S. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - -~~~~~~~~~

/

using list processing with only a constant factor loss in running time.

I believe that any algorithm, even one which uses address arithmetic,

requires non-linear time to solve the set union problem. Proving such

a statement seems to require a better understanding of random access

machines.

The set union problem can be generalized to a problem requiring

evaluation of functions defined on paths in trees. The techni ques used

here and in [1’] lead to a non-linear lower bound for some siccial

cases of this generalized problem [20]. Certain cases of the ~roblem can

be solved in almost-linear time by using complicated extensions of the best

set un ion algorithm i-r- :sente d here [1~]. ~ iether the most general version

of the function evaluation problem can be solved in almost-linear time

is unknown.

Acknowledgment.

I would like to thank Professor Wolfgang Paul for his thoughtful

c r i t ic i sm and valuable insights which contributed substantially to the

lower boun d T-r002.

3)4

~

-~~~~~~~~~~~~~~~ -~~- -~~~~~~~~~~~ -

- - ---- ‘--- - -

~~~~--—

References

[1] i. t . s u e , J. a. Ho~cr ct , and J. 0. Ulis:-~ i , The 0€~-sJ ~~i acre

of C omputer Algorithms, Addison-Wesley, hecc uing, bass. (if0 . ) .

[2] A. Borodin and I. Munro, The Computat ional Complexity of Algebraic

and :;umeric I- roble”i , Elsevier, New York (1975).

[3]  J. Doyle and R. L. Rivest , “Linear expected time of a simile w:ie- -~ imd

algorithm , ” info.  Proc. Letters 5 (197 - ), 1)4 -1)4 .
[)4] M. J. Fi scher , “Efficiency of equivalence algorithms, Ce-mi lexit:, o2

Comr -r ComLutatsuns, 0. :- . Miller ‘rn -i ~ . 0. Thatcher, eds., slenum

rr e s s , Cow York (l -°72) ,  153-1-

[ 5 ]  T. ;-.. Galler and TI . -J . Fischer, “ An improved equivalence alg-sr i ties , --
C onmi. ACM -

- (19 i,), 301-303 .
[, } J. i. F{opcroft and 0. D. Uliman, “Set me rging aigoritli’es,” A- -0

Computing 2 (1973), 2914-303.

[7] i-I. -Janayeri , W. i . Ogden, and W. C. Rounds , “The in t rins ical ly

exponential complexity of the circularity problem for attribute

grammars , ” Comm. ACM ii (1975), ~97-7O
[9] D. F. Knuth , The Art of Computer Programming, ‘ el. 1: n-bose-st cT

Algorithms, Addison-Wesley, Reading, I-lass. (i- 4’J ).

[ 9 ]  0. h. Knuth, The Axt of Computer Programming, Vol. ~: -5~~5~~iiJ cOo

Searching, Addi son-Wesley, Readi ng, Mass . (1075).

[10 ] D. -.. Onut-li and A. Gch~3nhage, “The expe:-t t l o s  sr ’it y o~ a siam-i-c

oqe sal - -ace- algnr i a : , ” Techn cal Re~ sri CiiV:-Cd-77-; - , Cu u~ or

Science Departs-sect , St an ford Jniversity (l -~77).

[11] A. . -Lo03og-or-uv , “On the crot so of ahgcr~ the . 
“ 5 . - 01 ~~~ 

- S

(19 5 3) ,  17 5- 1--

[12 ] A. 0. Kulmogorov and V. A. Us~~e-n skJ  : .  ‘ Us tOe - h - f a~ ti so of an

algor 0-c,” Us1c-h : 1-lat. Conk. 13 (1- 5- ). ~-2 Un~-i b ‘ -ras:J d - cci

in Peso-s. bath . Soc. Tranct .  II ‘ 1. 29 (i  - 3) .  2 1 - . 15 .

[13] o. R. I-: - yer and 0. J. St -noOse -u s-sc, “ The -squtvalence ~‘r Usle- :. t’or

i- 
~~ 
rims - i-a sessions with squasho C s’ -u - pu i r . s  s- j- ri~s mL ~c ~j i c - s  - ,

ir o c .  L 3 th  Annual iym j . on Cwi tch ing  and A c -  -:-tt a Thee ~~~~, l~ - -
.

l°5-i0

35

s.-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-



[114] M. J. Rabin and M. J. Fischer, “Super-exponential complexity of

Fresburger arithmetic,” Project MAC Technical Memorandum l~3,
MIT (197 14).

[15 ] R. Rivest and J. Vuillemin, “A generalization and proof of the

Anderaa-Rosenberg conjecture,” Proc. Seventh Annual ACM Symp. on

Theory of Computing (1975), 6-U.

[16] A. Sch~nhage, “Real-time simulation of multidimensional Turing
machines by storage modification machines, ” Project MAC Technical
Memoran dum 37, MIT (1973).

[17] R. E. Tarjan, “Efficiency of a good but not linear disjoint set

unic)n algorithm, ” Jour. ACM 22 (1975), 215-225.
[18] R. E. Tarj an , “Applications of path compression on balanced trees , ”

Technical Report STAN-CS-75-5l2, Computer Science Dept., Stanford

University (1975).

[19] B. E. Tarj an, “Solving path problems on directed graphs,” Technical

Report STAN-CS-75-52°, Computer Science Dept., Stanford University

(1975’) .

[23] R. 2 . Tarj an, “ Complexity of monotone networks for computing conjunctions, ”
Technical Repo rt ST’U\J -Ci’- -7’ -553, Comput er Scien ce Dept.,  St anfo rd

University (1970’).

[21] o. i. Tao, “On the average behavior of set merging algorithms, ” Proc.
Eighth Annual ACM Symp. on Theory of Computing (l9~~ ), 192-15.

- ‘ _ _ _  

- - - 
~~~~~

-
~~~~~~

- - — — ——  - — - -—~~-~~~~~- --- --



- - ~~~~~~~~~~~~~~~~~~~~~~ - 

~ —z~: 
--  

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•—

~~
—

~~
-- —~ ~~~ ~~~~~~~~~~~~~~~~~~ ~

-.— -- ,_-- -.
~~

— -- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

procedur e quick find

oet(parent(r1));

£~~~~~
ure slow union;

while r 
~ 0 

do

save — next(r2 );

parent(r2) 
.- r1;

next(r2) —
next(r1);

next (r1) —

— save

Table 14.1. Programs for find and union using the quick firsT

dat a structure.

37 

- - -~~— - ______-



~~~~
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

—

~~

- - -

~~~~ 

-- -

~
-- -

~~~~~~~~~

--

~~~ 

_ _

procedure slow weight- -u uni on ; 0

~~g~n

i r~~~i ze (r 1) -~~ s ’ ze (r 2) ~~~~~
-‘

begin

r
1 - r0;

si ze(r1) — size(r 1) + size(r0);

slow union -

end;

Table 1, • I rogram for w ’U~~~tssd union h e u r i s t i c ~~th j u i -k : l r d 1~ t~

-
-

~ - c ou t u r e .
-

30

—__- -~~~~~~ -—- — rn
~~~~~~~~~

- - - -~~~~~~---—- -- -~~ --~~-



~~~~~~~~~~~

- ----

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~1

procedure quick union;

parent(r2) — r1;

procedure slow find;

roo t — r 1;

while parent(root ) 
~ 0 

do root — parent(root);

so —

Table 14 .3. Program s for union and find using the quick union

data structure.

39

- -

~

- - -

~

--



~~~~~
- --,—- - -

~
- - -

~~~~~~~
- - - -  —

~~ 
-
~~~

-- —
~~~
—-- - - -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~

- - - - --
~~~~~~~~~

---- - —

~~

proc .ature quick weighted union~

if s i z e ( r ~~ ) < size(r2) ~~~~

set( r2 ) .. set(r
1);

parent(r1) —

size(r2) .— size(r1)+s ize(r
);

end

else begin
-~ —

parent(r2) —

si2e (r1) — s ize( r1) + s i se ( r 2 )

end ;

s- -s - ccn-e Oil  with path coiij re - sc ion ;

bagis

slow ~a_1;

surr -sni . — r1;

while i arent(current ) ~ S do

save ‘- parent (current);

parent(current ) — root ;

current — rave

end end;

Table- L .l+~ i-~rograms l’or weighted union an -i ‘ild i ca-~-~ r a s  -
~~~~ h- -sn s

with qui ck union data stnicture.

le)

.

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• Time

Quick find O(mn ) [1

with weighted union O(m log n) [1

Quick union O(mn) [ ) 4 ]

with weighted union O(m log n) [ E ]

with path compression o(m.max(1,log(n
2
/m)/log(2m/fl))) [17]

with both heuristics O(m a(m,n ) )  [17 ]

Table 11.5. Worst-case running times of set union algorithms.

~ 

_ -  ~~~~ - -‘ --~~~~~~
- -



Ti n— re - -

Quick t’ind O(n’) I _ -i]

with weighted. union 0(n) [l~ ]

-,~u~ck union 0(n
2) [:1]

with weighted union 0(n) [l~]

wi th i ath c-om~-ress:i -on

with both heuristics 0(n) [1.]

Table )4.- . Average running ti- es of set w b n  algorithcrs

as and n are ~-rsn ortiun’-l.



p~
g i

Figure 14.1. Dat a structure for quick find algorithm.

Sets “e A = j a,b, c,d, el , B = [f ,g, h, i)  .

113 

— —- - ---- - —_ --



[A aI~~

[J b I [ef]

I IcI/~~~1

B ( 1’

[IgJ ~~~~~~

[ Ii\

Figure 14.2. Data structure f’ ir quick uni on algoricis- -

Sets are A Ia,b,u, r, e) , P = ~ s ,g, h, ) .

_ _  

—~ --  - -  -~~~~~~--
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- - ‘__

1 0 1 - 1 _ _ _ _ ~01J _ _

-

Figure 14.3. Representation of 2(= 101102 as a list.

145

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


